block-accounting/backend/internal/pkg/bip39/bip39.go
2024-05-29 01:57:31 +03:00

349 lines
9.9 KiB
Go

package bip39
import (
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"errors"
"fmt"
"math/big"
"strings"
"golang.org/x/crypto/pbkdf2"
)
var (
// Some bitwise operands for working with big.Ints.
last11BitsMask = big.NewInt(2047)
shift11BitsMask = big.NewInt(2048)
bigOne = big.NewInt(1)
bigTwo = big.NewInt(2)
// wordLengthChecksumMasksMapping is used to isolate the checksum bits from
//the entropy+checksum byte array.
wordLengthChecksumMasksMapping = map[int]*big.Int{
12: big.NewInt(15),
15: big.NewInt(31),
18: big.NewInt(63),
21: big.NewInt(127),
24: big.NewInt(255),
}
// wordLengthChecksumShiftMapping is used to lookup the number of operand
// for shifting bits to handle checksums.
wordLengthChecksumShiftMapping = map[int]*big.Int{
12: big.NewInt(16),
15: big.NewInt(8),
18: big.NewInt(4),
21: big.NewInt(2),
}
// wordList is the set of words to use.
wordList []string
// wordMap is a reverse lookup map for wordList.
wordMap map[string]int
)
var (
// ErrInvalidMnemonic is returned when trying to use a malformed mnemonic.
ErrInvalidMnemonic = errors.New("Invalid mnenomic")
// ErrEntropyLengthInvalid is returned when trying to use an entropy set with
// an invalid size.
ErrEntropyLengthInvalid = errors.New("Entropy length must be [128, 256] and a multiple of 32")
// ErrValidatedSeedLengthMismatch is returned when a validated seed is not the
// same size as the given seed. This should never happen is present only as a
// sanity assertion.
ErrValidatedSeedLengthMismatch = errors.New("Seed length does not match validated seed length")
// ErrChecksumIncorrect is returned when entropy has the incorrect checksum.
ErrChecksumIncorrect = errors.New("Checksum incorrect")
)
func init() {
SetWordList(English)
}
// SetWordList sets the list of words to use for mnemonics. Currently the list
// that is set is used package-wide.
func SetWordList(list []string) {
wordList = list
wordMap = map[string]int{}
for i, v := range wordList {
wordMap[v] = i
}
}
// GetWordList gets the list of words to use for mnemonics.
func GetWordList() []string {
return wordList
}
// GetWordIndex gets word index in wordMap.
func GetWordIndex(word string) (int, bool) {
idx, ok := wordMap[word]
return idx, ok
}
// NewEntropy will create random entropy bytes
// so long as the requested size bitSize is an appropriate size.
//
// bitSize has to be a multiple 32 and be within the inclusive range of {128, 256}.
func NewEntropy(bitSize int) ([]byte, error) {
if err := validateEntropyBitSize(bitSize); err != nil {
return nil, err
}
entropy := make([]byte, bitSize/8)
_, _ = rand.Read(entropy) // err is always nil
return entropy, nil
}
// EntropyFromMnemonic takes a mnemonic generated by this library,
// and returns the input entropy used to generate the given mnemonic.
// An error is returned if the given mnemonic is invalid.
func EntropyFromMnemonic(mnemonic string) ([]byte, error) {
mnemonicSlice, isValid := splitMnemonicWords(mnemonic)
if !isValid {
return nil, ErrInvalidMnemonic
}
// Decode the words into a big.Int.
var (
wordBytes [2]byte
b = big.NewInt(0)
)
for _, v := range mnemonicSlice {
index, found := wordMap[v]
if !found {
return nil, fmt.Errorf("word `%v` not found in reverse map", v)
}
binary.BigEndian.PutUint16(wordBytes[:], uint16(index))
b.Mul(b, shift11BitsMask)
b.Or(b, big.NewInt(0).SetBytes(wordBytes[:]))
}
// Build and add the checksum to the big.Int.
checksum := big.NewInt(0)
checksumMask := wordLengthChecksumMasksMapping[len(mnemonicSlice)]
checksum = checksum.And(b, checksumMask)
b.Div(b, big.NewInt(0).Add(checksumMask, bigOne))
// The entropy is the underlying bytes of the big.Int. Any upper bytes of
// all 0's are not returned so we pad the beginning of the slice with empty
// bytes if necessary.
entropy := b.Bytes()
entropy = padByteSlice(entropy, len(mnemonicSlice)/3*4)
// Generate the checksum and compare with the one we got from the mneomnic.
entropyChecksumBytes := computeChecksum(entropy)
entropyChecksum := big.NewInt(int64(entropyChecksumBytes[0]))
if l := len(mnemonicSlice); l != 24 {
checksumShift := wordLengthChecksumShiftMapping[l]
entropyChecksum.Div(entropyChecksum, checksumShift)
}
if checksum.Cmp(entropyChecksum) != 0 {
return nil, ErrChecksumIncorrect
}
return entropy, nil
}
// NewMnemonic will return a string consisting of the mnemonic words for
// the given entropy.
// If the provide entropy is invalid, an error will be returned.
func NewMnemonic(entropy []byte) (string, error) {
// Compute some lengths for convenience.
entropyBitLength := len(entropy) * 8
checksumBitLength := entropyBitLength / 32
sentenceLength := (entropyBitLength + checksumBitLength) / 11
// Validate that the requested size is supported.
err := validateEntropyBitSize(entropyBitLength)
if err != nil {
return "", err
}
// Add checksum to entropy.
entropy = addChecksum(entropy)
// Break entropy up into sentenceLength chunks of 11 bits.
// For each word AND mask the rightmost 11 bits and find the word at that index.
// Then bitshift entropy 11 bits right and repeat.
// Add to the last empty slot so we can work with LSBs instead of MSB.
// Entropy as an int so we can bitmask without worrying about bytes slices.
entropyInt := new(big.Int).SetBytes(entropy)
// Slice to hold words in.
words := make([]string, sentenceLength)
// Throw away big.Int for AND masking.
word := big.NewInt(0)
for i := sentenceLength - 1; i >= 0; i-- {
// Get 11 right most bits and bitshift 11 to the right for next time.
word.And(entropyInt, last11BitsMask)
entropyInt.Div(entropyInt, shift11BitsMask)
// Get the bytes representing the 11 bits as a 2 byte slice.
wordBytes := padByteSlice(word.Bytes(), 2)
// Convert bytes to an index and add that word to the list.
words[i] = wordList[binary.BigEndian.Uint16(wordBytes)]
}
return strings.Join(words, " "), nil
}
// MnemonicToByteArray takes a mnemonic string and turns it into a byte array
// suitable for creating another mnemonic.
// An error is returned if the mnemonic is invalid.
func MnemonicToByteArray(mnemonic string, raw ...bool) ([]byte, error) {
var (
mnemonicSlice = strings.Split(mnemonic, " ")
entropyBitSize = len(mnemonicSlice) * 11
checksumBitSize = entropyBitSize % 32
fullByteSize = (entropyBitSize-checksumBitSize)/8 + 1
)
// Turn into raw entropy.
rawEntropyBytes, err := EntropyFromMnemonic(mnemonic)
if err != nil {
return nil, err
}
// If we want the raw entropy then we're done.
if len(raw) > 0 && raw[0] {
return rawEntropyBytes, nil
}
// Otherwise add the checksum before returning
return padByteSlice(addChecksum(rawEntropyBytes), fullByteSize), nil
}
// NewSeedWithErrorChecking creates a hashed seed output given the mnemonic string and a password.
// An error is returned if the mnemonic is not convertible to a byte array.
func NewSeedWithErrorChecking(mnemonic string, password string) ([]byte, error) {
_, err := MnemonicToByteArray(mnemonic)
if err != nil {
return nil, err
}
return NewSeed(mnemonic, password), nil
}
// NewSeed creates a hashed seed output given a provided string and password.
// No checking is performed to validate that the string provided is a valid mnemonic.
func NewSeed(mnemonic string, password string) []byte {
return pbkdf2.Key([]byte(mnemonic), []byte("mnemonic"+password), 2048, 64, sha512.New)
}
// IsMnemonicValid attempts to verify that the provided mnemonic is valid.
// Validity is determined by both the number of words being appropriate,
// and that all the words in the mnemonic are present in the word list.
func IsMnemonicValid(mnemonic string) bool {
_, err := EntropyFromMnemonic(mnemonic)
return err == nil
}
// Appends to data the first (len(data) / 32)bits of the result of sha256(data)
// Currently only supports data up to 32 bytes.
func addChecksum(data []byte) []byte {
// Get first byte of sha256
hash := computeChecksum(data)
firstChecksumByte := hash[0]
// len() is in bytes so we divide by 4
checksumBitLength := uint(len(data) / 4)
// For each bit of check sum we want we shift the data one the left
// and then set the (new) right most bit equal to checksum bit at that index
// staring from the left
dataBigInt := new(big.Int).SetBytes(data)
for i := uint(0); i < checksumBitLength; i++ {
// Bitshift 1 left
dataBigInt.Mul(dataBigInt, bigTwo)
// Set rightmost bit if leftmost checksum bit is set
if firstChecksumByte&(1<<(7-i)) > 0 {
dataBigInt.Or(dataBigInt, bigOne)
}
}
return dataBigInt.Bytes()
}
func computeChecksum(data []byte) []byte {
hasher := sha256.New()
_, _ = hasher.Write(data) // This error is guaranteed to be nil
return hasher.Sum(nil)
}
// validateEntropyBitSize ensures that entropy is the correct size for being a
// mnemonic.
func validateEntropyBitSize(bitSize int) error {
if (bitSize%32) != 0 || bitSize < 128 || bitSize > 256 {
return ErrEntropyLengthInvalid
}
return nil
}
// padByteSlice returns a byte slice of the given size with contents of the
// given slice left padded and any empty spaces filled with 0's.
func padByteSlice(slice []byte, length int) []byte {
offset := length - len(slice)
if offset <= 0 {
return slice
}
newSlice := make([]byte, length)
copy(newSlice[offset:], slice)
return newSlice
}
// compareByteSlices returns true of the byte slices have equal contents and
// returns false otherwise.
func compareByteSlices(a, b []byte) bool {
if len(a) != len(b) {
return false
}
for i := range a {
if a[i] != b[i] {
return false
}
}
return true
}
func splitMnemonicWords(mnemonic string) ([]string, bool) {
// Create a list of all the words in the mnemonic sentence
words := strings.Fields(mnemonic)
// Get num of words
numOfWords := len(words)
// The number of words should be 12, 15, 18, 21 or 24
if numOfWords%3 != 0 || numOfWords < 12 || numOfWords > 24 {
return nil, false
}
return words, true
}